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Abstract: This study selected six stocks of companies to help investors diversify their investment. In 
this paper, we use the ARMA model to predict the returns of the assets. Then modern portfolio theory 
is adopted to discovery the Maximum Sharpe Ratio Portfolio and the Minimum Volatility Portfolio. 
The results show that the ARMA model can be surely used to forecast the future return of the asset. 
Besides, through Monte Carlo simulation, we find that the asset of MSFT accounts for the largest 
proportion in the two interested portfolios. Finally, based on the asset’s weights, we compare the 
constructed portfolio with the actual market return, and the results show that our portfolios beat the 
market return and can bring certain financial benefits for investors. To sum up, the results benefit the 
related investors in financial markets. 

1. Introduction  
Based on the principle of risk diversification, in securities investment, individuals commonly invest 

in different securities to construct investment portfolios to avoid risks and obtain more returns. 
Consequently, studies on portfolio are enduring [1]. Since Markowitz [2] proposed the securities 
portfolio theory in 1952, most scholars at home and abroad have conducted in-depth research on 
portfolio management. For example, Sun [3] combined traditional financial theories with emerging 
programming languages to investigate the calculation of the expected rate of return and portfolio 
variance in Markowitz’s portfolio theory. In addition, Li [4] proposed that the Markowitz theory fully 
considers the coexistence of risks and returns, etc. In principle, Mean-risk models such as mean-
absolute deviation (MAD) model, mean-variance (MV) model and mean CVaR model can be applied 
to financial instruments such as stocks, bonds, currencies and derivatives as long as the return and risk 
of assets can be estimated [5-8]. These models are being used in the first step of the asset allocation 
procedure to determine an optimal proportion of the fund to be allocated to various assets [9-10]. 
According to the above-mentioned theories, relevant scholars further made some investigations of 
portfolio based on asset weights. Shahidin [11] forecasted share price by using Geometric Brownian 
Motion and hence used the Variance-Co-variance to calculate Value at Risk of each stock and stock 
portfolio. According to the value at risk of stock portfolios of five different industrial products. Their 
findings indicated that stock portfolios from industrial product trading and service industries are most 
suitable for risk aversion and risk premium investors. Hoque [12] compared the performance of the 
Islamic stock portfolio (ISP) and conventional stock portfolio (CSP) of the five industrial sectors and 
market in Malaysia, the authors found that the risk-sharing ISP is superior to the risk-bearing CSP for 
better returns at the sector as well as the market level. Khalfaoui [13] used loss functions on the daily 
Value-at-Risk estimates of a diversified portfolio in three stock indices and proposed a wavelet-based 
approach which decomposes a given time series on different time horizons. Their findings pointed out 
that wavelet-based models increase predictive performance of financial forecasting in low scales 
according to number of violations and failure probabilities for VaR models. In 2012, VaR Model based 
on J. P. Morgan's RiskMetrics has problem that actual loss exceeded VaR under unstable economic 
conditions. Therefore, Park [14] proposed a One-factor VaR Model and found that One-factor VaR 
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Model can solve the problem of the actual loss exceeded VaR. Artini [15] compared the performance 
of small and medium enterprises (SME) and manufacturing company stock portfolios in the 
Indonesian, Chinese and Indian capital markets by the Sharpe Index and the significance of differences 
in average performance in the capital market. Their findings indicated that SME and manufacturing 
company stock portfolios had relatively better performances in China and India. To sum up, previous 
literature focused mainly on the performance of the risk of the portfolio. Limited research focused on 
the return of portfolio. However, as one of the most key characteristics of asset, return should also be 
focused more. Therefore, this paper explored the return of the portfolio. 

By studying the U.S. stock market, the S&P 500 Index and Nasdaq Index are important components 
of U.S. Capital Markets which reflect the general development of the U.S. economy. Its constituent 
stocks are sought after by many investors, while other ordinary stocks are neglected. To explore the 
relationship between stock values and stock types, we chose representative National Association of 
Securities Dealers Automated Quotations (NASDAQ) component stocks, i.e., Microsoft Corporation 
(MSFT), NVIDIA Corporation (NVDA), Napco Security Technologies, Inc. (NSSC); and 
representative S&P Composite 1500 Consumer Discretionary component stocks, i.e., The New York 
Times Company (NYT), Foot Locker, Inc. (FL). To ensure the assets to be more diversified, Basic 
Sanitation Company of the State of Sao Paulo-SABESP (SBS) from the New York Stock Exchange 
(NYSE) Composite component is also selected. And using portfolio theory and Monte Carlo 
simulation as the theoretical basis, we attempt to build out a value investing strategy in technology and 
consumer services stock versions to avoid single industry risks. Finally, we got the efficient frontier 
and found the Maximum Sharpe Ratio Portfolio and the Minimum Volatility Portfolio. The results in 
this paper can be generalized as follows. First, the ADF test results indicated that the asset historical 
return series is a steady time series; Second, ARMA model can be used for time series prediction in 
portfolio; Third, through the Maximum Sharpe Ratio Portfolio and the Minimum Volatility Portfolio, 
the authors pointed out that MSFT has the largest weight, more attention should be paid to MSFT in 
the portfolio; Fourth, the constructed portfolio based on the weight we obtained above beat the market. 
This paper is constructed as follows. Section 2 is the data and methods. Section 3 shows the results 
and Section 4 concludes the paper. 

2. Data and Methods 
2.1 Data 

We extracted sample data of the U.S. listed companies from yahoo finance 
(https://finance.yahoo.com/), the sample period is from Jan 1, 2010, to Dec 31, 2020. Additionally, the 
specific data we select is the daily adjusted closing price, which can give an accurate representation of 
the firm's equity value beyond the simple market price. To explore the relationship between stock 
values and stock types, we chose the NASDAQ component stocks, i.e., MSFT, NVDA, NSSC; S&P 
Composite 1500 Consumer Discretionary component stocks: NYT, FL and NYSE Composite 
component stocks SBS. And we dropped the null value and performed difference of first-order on the 
original data to obtain the compounded return of a total of 16608 samples. The descriptive statistics 
are shown in Table I. 

Table 1 Descriptive Statistics of return series 

 FL MSFT Deviation NSSC NVDA NYT SBS 
Mean 0.0006 0.0008 0.0010 0.0012 0.0005 0.0002 

Std 0.0248 0.0160 0.0290 0.0266 0.0228 0.0275 
Min -0.3275 -0.1595 -0.2516 -0.2077 -0.2481 -0.2888 
25% -0.0102 -0.0068 -0.0119 -0.0113 -0.0109 -0.0144 
50% 0.0008 0.0007 0.0000 0.0014 0.0006 0.0006 
75% 0.0118 0.0087 0.0137 0.0141 0.0118 0.0151 
Max 0.2481 0.1329 0.1836 0.2609 0.1197 0.1771 
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Table I shows that the returns on mean of the six assets are positive, which are 0.0006, 0.0008, 
0.0010, 0.0012, 0.0005, 0.0002, respectively. Generally, the return series is stable without abnormal 
value. NVDA has the largest rally among the six assets, for about 0.2481. And FL has the largest drop 
among the six assets, for about -0.3275. 

2.2 ADF test 
Time series need to satisfy the stationary requirement when modeling time series using arma 

models.And the unit root test is usually used to check the stationary of the time series. Among several 
methods to certify the existence of unit root, the ADF test, proposed by Said [16] has been widely used 
because of its advantages. For example, Huo [17] believed that under the circumstance of sufficient 
sample size, traditional unit root tests such as the ADF test, has good test efficacy. Additionally, WU 
and DENG [18] found that the traditional unit root test seem to perform better than the quantile unit 
root test. Thus, in this paper, the ADF test is adopted to test the stationary of the historical stock return 
series. The specific formulas of ADF test are as follows. 

𝛥𝛥𝛥𝛥𝛥𝛥 = 𝛾𝛾𝛾𝛾𝛾𝛾 − 1 + ∑ 𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 − 1 + 𝜇𝜇𝑝𝑝
𝑡𝑡=1 𝑡𝑡                      (1) 

𝛥𝛥𝛥𝛥𝛥𝛥 = 𝛾𝛾𝛾𝛾𝛾𝛾 − 1 + 𝛼𝛼 + ∑ 𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 − 1 + 𝜇𝜇𝜇𝜇𝑝𝑝
𝑡𝑡=1                     (2) 

𝛥𝛥𝛥𝛥𝛥𝛥 = 𝛾𝛾𝛾𝛾𝛾𝛾 − 1 + 𝛼𝛼 + 𝛿𝛿𝛿𝛿 + ∑ 𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 − 1 + 𝜇𝜇𝜇𝜇𝑝𝑝
𝑡𝑡=1                   (3) 

Where,𝛼𝛼 is constant term;𝛿𝛿𝛿𝛿 is time trend term;𝜇𝜇𝜇𝜇 is random disturbance term, we estimated the 
regression coefficients 𝜌𝜌� and the standard deviation 𝜎𝜎� by using the traditional OLS estimation and 
constructed the statistic 𝑡𝑡.The null hypothesis is 𝛾𝛾 equals to 0. 

2.3 ARMA model 
ARMA modeling is a kind of quantitative analysis methods to study the laws of development and 

changes, which reveals the correlation structure and dynamics of series by analyzing their correlations 
at different moments [19]. The ARMA model takes interference of random fluctuations into account. 
By using the price historical data to explain stock price time changing pattern, it can make short-term 
forecasting of future stock prices. Thus, in the financial industry, ARMA model plays a significant 
role in explaining and forecasting the time series such as stock price [20]. The ARMA model is a 
combination of autoregressive model (AR) and moving average model (MA).  

Among them, the autoregressive model is predicted by a linear combination of past observations 
and present disturbance values. The mathematical equation of the AR model is, 

𝑌𝑌𝑌𝑌 = 𝜑𝜑1𝑌𝑌𝑌𝑌 − 1 + 𝜑𝜑2𝑌𝑌𝑌𝑌 − 2+. . . +𝜑𝜑𝜑𝜑𝜑𝜑𝜑𝜑 − 𝑝𝑝 + 𝑒𝑒𝑒𝑒                 (4) 

where𝑝𝑝is the order of the model, 𝜑𝜑𝜑𝜑(𝑖𝑖 = 1,2, . . . ,𝑝𝑝) is the coefficient to be determined, and 𝑒𝑒𝑒𝑒is 
the error, and 𝑌𝑌𝑌𝑌 is the smooth time series. 

The moving average model is predicted by a linear combination of past and present white noise 
disturbance values. The mathematical equation of the MA model is, 

𝑌𝑌𝑌𝑌 = 𝑒𝑒𝑒𝑒 − 𝜃𝜃1𝑒𝑒𝑒𝑒 − 1 − 𝜃𝜃2𝑒𝑒𝑒𝑒 − 2−. . .−𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃 − 𝑞𝑞                  (5) 

where𝑞𝑞is the order of the model,𝜃𝜃𝜃𝜃(𝑖𝑖 = 1,2, . . . ,𝑝𝑝) is the coefficient to be determined, and 𝑒𝑒𝑒𝑒 is 
the error, and 𝑌𝑌𝑌𝑌 is the smooth time series. 

Therefore, the expression of the autoregressive moving average model is, 

                      (6) 

And all the three models are all follow the following default conditions, 

                      (7) 
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And the linear function of  with respect to  is, 

                       (8) 

Simplify as, 

                                  (9) 

And for ,the  linear function of  with respect to  is, 

                                (10) 

According to the additivity of linear functions,we can figure out the  linear function of  with 
respect to  .And the estimation function is , 

                                  (11) 

And the  is the predicted value of step l of the time series. 

2.4 D-W test 
For first-order correlation test, DW test is a classical method to test first-order autocorrelation of 

series especially for time series, which is proposed by Durbin and Waston [21]. When the sample 
meets the preconditions, i.e., the sample size is large enough and the random disturbance terms obey 
normal distribution, the DW test results are excellent to explain autocorrelation [22]. Therefore, to test 
whether the time series residuals are autocorrelated, DW test is adopted. The process of DW test is 
shown as follows. 

DW statistic, 

𝐷𝐷𝐷𝐷 = ∑ (𝑒𝑒𝑒𝑒−𝑒𝑒𝑒𝑒−1)2𝑛𝑛
𝑡𝑡=2

∑ 𝑒𝑒𝑡𝑡2
𝑛𝑛
𝑡𝑡=2

= ∑ 𝑒𝑒𝑡𝑡2
𝑛𝑛
𝑡𝑡=2 +∑ 𝑒𝑒𝑡𝑡−12𝑛𝑛

𝑡𝑡=2 −2∑ 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒−1𝑛𝑛
𝑡𝑡=2

∑ 𝑒𝑒𝑡𝑡2
𝑛𝑛
𝑡𝑡=2

                (12) 

∑ 𝑒𝑒𝑡𝑡2𝑛𝑛
𝑡𝑡=2  and  ∑ 𝑒𝑒𝑡𝑡−12𝑛𝑛

𝑡𝑡=2  can be considered approximately equal when the sample size is large 
enough, so DW statistic,  

𝐷𝐷𝐷𝐷 ≈ 2 �1 − ∑ 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒−1𝑛𝑛
𝑡𝑡=2
∑ 𝑒𝑒𝑡𝑡2
𝑛𝑛
𝑡𝑡=2

�                             (13) 

Autocorrelation coefficient of error series𝜇𝜇1, 𝜇𝜇2, . . . 𝜇𝜇𝜇𝜇, 

𝜑𝜑 = ∑ 𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇−1𝑛𝑛
𝑡𝑡=2

�∑ 𝜇𝜇𝑡𝑡2
𝑛𝑛
𝑡𝑡=2 �∑ 𝜇𝜇𝑡𝑡−12𝑛𝑛

𝑡𝑡=2

                               (14) 

The estimated autocorrelation coefficient of the error series 𝜇𝜇1, 𝜇𝜇2, . . . 𝜇𝜇𝜇𝜇 of the estimate value 
𝑒𝑒𝑒𝑒, 

𝜑𝜑� = ∑ 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒−1𝑛𝑛
𝑡𝑡=2

�∑ 𝑒𝑒𝑡𝑡2
𝑛𝑛
𝑡𝑡=2 �∑ 𝑒𝑒𝑡𝑡−12𝑛𝑛

𝑡𝑡=2

                               (15) 

From the equation (8), 

𝜑𝜑� ≈ ∑ 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒−1𝑛𝑛
𝑡𝑡=2
∑ 𝑒𝑒𝑡𝑡2
𝑛𝑛
𝑡𝑡=2

                                  (16) 

So, equation (8) is rewritten, 
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𝐷𝐷𝐷𝐷 ≈ 2(1 − 𝜑𝜑�)                                 (17) 

Because 𝜑𝜑 is the autocorrelation coefficient of error 𝜇𝜇𝜇𝜇 and 𝜇𝜇𝜇𝜇 − 1 and the range of values of 
𝜑𝜑 is -1 to 1, the value range of DW is between 0 and 4. When the DW value is close to 2, 𝜑𝜑 tends to 
0, which means that 𝜇𝜇𝜇𝜇, 𝜇𝜇𝜇𝜇 − 1 are not correlated. 

2.5 Portfolio Return 

Where 𝑛𝑛 is the number of the assets,𝑤𝑤𝑤𝑤 is the weight of the i-th asset in the portfolio,𝑅𝑅𝑅𝑅 is the 
return of the i-th asset. 

𝑅𝑅𝑅𝑅 = ∑ 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑛𝑛
𝑖𝑖=1                                  (18) 

And the variance of the portfolio is, 

𝐷𝐷(𝑅𝑅𝑅𝑅) = ∑ ∑ 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤(𝑅𝑅𝑅𝑅,𝑅𝑅𝑅𝑅)𝑛𝑛
𝑗𝑗=1

𝑛𝑛
𝑖𝑖=1                         (19) 

Where  𝑛𝑛  is the number of the assets,𝑤𝑤𝑤𝑤 , 𝑤𝑤𝑤𝑤 is the weight of the i-th and j-th asset in the 
portfolio,𝑅𝑅𝑅𝑅,𝑅𝑅𝑅𝑅 is the return of the i-th and j-th asset. 

2.6 Ljung-box Test 
Ljung-box test is a common method used to test the autocorrelation of time series, which is adapted 

by Ljung and Box [23] on the basic of Portmanteau statistic. And Ljung-box test is widely used in the 
application of Econometrics and Time Series [24], 

The statistic Q is, 

𝑄𝑄(𝑚𝑚) = 𝑇𝑇(𝑇𝑇 + 2)∑ 𝜌𝜌�𝑘𝑘
2

𝑇𝑇−𝑘𝑘
𝑚𝑚
𝑘𝑘=1                              (20) 

Where 𝑇𝑇 is the sample size,𝜌𝜌�(𝑘𝑘) is the 𝑘𝑘 -th order autocorrelation coefficient of the sample, 𝑚𝑚 
is the number of autocorrelation lags included in the statistic. The 𝑄𝑄(𝑚𝑚) statistic is asymptotically 
Chi-Square distributed under the null hypothesis. The null hypothesis is,𝜌𝜌1 = 𝜌𝜌2 =. . . = 𝜌𝜌𝜌𝜌 = 0 and 
series are uncorrelated at m-order lags. The p-values above 0.05 indicate the acceptance of the null 
hypothesis of model accuracy under 95% significant levels. 

3. Results 
We did the ADF test, ARMA forecasting, DW correlation test and Ljung-box Test. The results are 

shown in Table II, Table III, Table IV and Table V, respectively. 

3.1 ADF test 
Table 2 ADF test results 

Asset historical return t-statistic 
FL -19.6095*** 

MSFT -19.1705*** 
NSSC -42.2815*** 
NVDA -16.3316*** 
NYT -22.9461*** 
SBS -16.0105*** 

Note: *** represents significance at 1% level. 
The above results shows that the significance of the t-statistic is less than 1%, which can indicate 

that the asset historical return series is a steady time series. 
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3.2 ARMA forecasting 
Table 3 ARMA forecast results 

Date Real 
return forecast lower_ci_95 lower_ci_99 upper_ci_95 upper_ci_99 

2020-12-
30 -0.0047 -0.0032 -0.0564 -0.0731 0.0500 0.0668 

2020-12-
31 0.0012 0.0014 -0.0519 -0.0686 0.0546 0.0714 

2021-01-
04 -0.0562 -0.0045 -0.0578 -0.0745 0.0488 0.0655 

2021-01-
05 0.0000 -0.0043 -0.0490 -0.0657 0.0576 0.0743 

2021-01-
06 -0.0137 0.0037 -0.0496 -0.0663 0.0570 0.0738 

Note: The ARMA results shown here is for 5 days ahead forecasting of the asset of SBS 
Based on the assumption of the ARMA model,we model the ARMA using the stationary time series 

as above. From Table III, the forecasted return of SBS is close to the real return. And the SBS is the 
trade code of Basic Sanitation Company of the State of Sao Paulo-SABESP (SBS) from the New York 
Stock Exchange (NYSE) Composite component. The rise and fall of SBS of the predicted value in the 
first three days are consistent with the real return. Also, all forecasted values are within the 95% 
confidence interval. 

3.3 D-W correlation test 
Table 4 D-W test 

Asset model residual D-W value(d) 
FL 2.0128 

MSFT 2.0175 
NSSC 1.9904 
NVDA 2.0142 
NYT 1.9931 
SBS 1.9960 

Table IV shows that all D-W value(d) are close to 2 or equal to 2. Therefore, it indicates that the 
ARMA model can well forecast financial asset.  

3.4 Ljung-box Test 
Table 5 Ljung-box Test 

Asset model residual p-value (lag 5) p-value (lag 10) p-value (lag 12) 
FL 0.9999 0.9991 0.9992 

MSFT 0.9985 0.9842 0.9894 
NSSC 0.8642 0.9479 0.8709 
NVDA 0.4912 0.2307 0.2085 
NYT 0.9999 0.9999 0.9999 
SBS 0.9999 0.9999 0.9999 

Table V shows that almost all p-value from lag order 5 to 12 are close to 1. Only an asset has 
relatively lower p-value. Thus, this further suggests that the ARMA model can well forecast financial 
assets. Next, based on the above research methods, we implement the Monte Carlo simulation, and got 
the efficient frontier and two certain portfolios, i.e., the Minimum Volatility Portfolio and the 
Maximize Sharpe Ratio Portfolio, in the following Figure 1. 
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Fig 1 Efficient frontier and the two interested portfolios 

The weight for each asset is shown in the following Table VI. 
Table 6 Portfolio Optimization 

Maximum Sharpe Ratio portfolio 

Asset FL MSFT NSSC NVDA NYT SBS 
Weights 13.12% 36.69% 24.08% 22.02% 4.06% 0.02% 
Returns 327.59% Volatility 79.95% Sharpe_ratio 

 
409.72% 

Minimum Volatility portfolio 

Asset FL MSFT NSSC NVDA NYT SBS 
Weights 16.75% 45.75% 11.78% 0.80% 14.55% 10.36% 
Returns 258.55% Volatility 72.39% Sharpe_ratio 357.14% 
The Sharpe Ratio represents the returns that investors can obtain under a given volatility. The larger 

the Sharpe ratio, the higher the returns obtained by the given volatility of the portfolio. At the same 
time, the weight of each asset in the Maximum Sharpe Ratio portfolio can also help investors to choose 
stocks. Besides, the Minimum Volatility portfolio represents the portfolio composed of multiple assets 
with the lowest risk to reach the expected return. The above results indicate that the weights of FL, 
MSFT, NSSC, NVDA, NYT and SBS in the Maximum Sharpe Ratio portfolio are 13.12%, 36.69%, 
24.08%, 22.02%, 4.06%, 0.02% respectively. For the Minimum Volatility portfolio, the weights of the 
six assets are 16.75%, 45.75%, 11.78%, 0.80%, 14.55%, 10.36% separately. It obvious that MSFT has 
the largest weight for both different portfolios. Therefore, more attention should be paid to MSFT in 
the portfolio. 

3.5 Further discussion 
The above portfolio optimization results are obtained from certain six asset. Thus, it is puzzled 

whether the constructed portfolios beat the market. In this section, we do further explorations to 
compare the portfolio. Specifically, we collect daily returns for the selected assets and the return of 
market index for the same time from 2010 to 2020. The results for the comparison are shown as follows 
in Figure 2. Obviously, the constructed portfolio based on the weight we obtained above beat the 
market, which means that the investors can surely benefit from our portfolio. 
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Fig 2 Comparison of the constructed portfolios and the market index return 

4. Conclusion 
This paper constructs portfolios based on six representative assets from the U.S. stock market. We 

forecast the asset by ARMA model, and the results show that ARMA can be used more in asset return 
forecasting. Furthermore, the results from portfolio construction show that MSFT may be an interested 
company for mean-variance investors who adopt the minimum variance portfolio or the maximum 
Sharpe Ratio portfolio. Besides, it is identified that our portfolio with certain asset weight can surely 
beat the market index return and bring economic benefits for the related investors. 

However, deficiencies also exist. For example, we only use individual metrics like Sharpe Ratio or 
volatility to perform the asset optimization, adopting other indicators to make in-depth investigation 
may be deserved. 
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